metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23⋊D12, (C2×C4)⋊D12, C3⋊1C2≀C22, (C2×C12)⋊1D4, C23⋊C4⋊3S3, C22⋊C4⋊1D6, (C22×C6)⋊2D4, C23⋊2D6⋊1C2, D4⋊6D6⋊1C2, D6⋊D4⋊1C2, (C2×Dic3)⋊1D4, (C2×D4).11D6, (C22×S3)⋊1D4, C6.13C22≀C2, (C6×D4).8C22, C22.24(S3×D4), C22.8(C2×D12), (S3×C23)⋊1C22, C23.6D6⋊1C2, (C22×C6).2C23, C2.16(D6⋊D4), C6.D4⋊1C22, C23.12(C22×S3), (C3×C23⋊C4)⋊4C2, (C2×C6).17(C2×D4), (C3×C22⋊C4)⋊1C22, (C2×C3⋊D4).2C22, SmallGroup(192,300)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C6 — C2×C6 — C22×C6 — C2×C3⋊D4 — D4⋊6D6 — C23⋊D12 |
C1 — C2 — C23 — C23⋊C4 |
Generators and relations for C23⋊D12
G = < a,b,c,d,e | a2=b2=c2=d12=e2=1, ab=ba, ac=ca, dad-1=eae=abc, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 800 in 198 conjugacy classes, 39 normal (21 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C2×D4, C2×D4, C4○D4, C24, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C23⋊C4, C23⋊C4, C22≀C2, 2+ 1+4, D6⋊C4, C6.D4, C3×C22⋊C4, C2×D12, C4○D12, S3×D4, D4⋊2S3, C2×C3⋊D4, C2×C3⋊D4, C6×D4, S3×C23, C2≀C22, C23.6D6, C3×C23⋊C4, D6⋊D4, C23⋊2D6, D4⋊6D6, C23⋊D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C22≀C2, C2×D12, S3×D4, C2≀C22, D6⋊D4, C23⋊D12
Character table of C23⋊D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | 12E | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 12 | 12 | 12 | 12 | 2 | 4 | 8 | 8 | 12 | 12 | 24 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ17 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -1 | √3 | √3 | -√3 | 1 | -√3 | orthogonal lifted from D12 |
ρ20 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | 1 | √3 | -√3 | -√3 | -1 | √3 | orthogonal lifted from D12 |
ρ21 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | 1 | -√3 | √3 | √3 | -1 | -√3 | orthogonal lifted from D12 |
ρ22 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -1 | -√3 | -√3 | √3 | 1 | √3 | orthogonal lifted from D12 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ24 | 4 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ25 | 4 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ27 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 16)(2 17)(3 24)(4 13)(5 20)(6 21)(7 19)(8 14)(9 15)(10 22)(11 23)(12 18)
(1 10)(3 12)(5 8)(14 20)(16 22)(18 24)
(1 10)(2 11)(3 12)(4 7)(5 8)(6 9)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 3)(4 6)(7 9)(10 12)(13 15)(16 24)(17 23)(18 22)(19 21)
G:=sub<Sym(24)| (1,16)(2,17)(3,24)(4,13)(5,20)(6,21)(7,19)(8,14)(9,15)(10,22)(11,23)(12,18), (1,10)(3,12)(5,8)(14,20)(16,22)(18,24), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,3)(4,6)(7,9)(10,12)(13,15)(16,24)(17,23)(18,22)(19,21)>;
G:=Group( (1,16)(2,17)(3,24)(4,13)(5,20)(6,21)(7,19)(8,14)(9,15)(10,22)(11,23)(12,18), (1,10)(3,12)(5,8)(14,20)(16,22)(18,24), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,3)(4,6)(7,9)(10,12)(13,15)(16,24)(17,23)(18,22)(19,21) );
G=PermutationGroup([[(1,16),(2,17),(3,24),(4,13),(5,20),(6,21),(7,19),(8,14),(9,15),(10,22),(11,23),(12,18)], [(1,10),(3,12),(5,8),(14,20),(16,22),(18,24)], [(1,10),(2,11),(3,12),(4,7),(5,8),(6,9),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,3),(4,6),(7,9),(10,12),(13,15),(16,24),(17,23),(18,22),(19,21)]])
G:=TransitiveGroup(24,336);
(2 20)(3 21)(6 24)(7 13)(10 16)(11 17)
(2 20)(4 22)(6 24)(8 14)(10 16)(12 18)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 15)(16 24)(17 23)(18 22)(19 21)
G:=sub<Sym(24)| (2,20)(3,21)(6,24)(7,13)(10,16)(11,17), (2,20)(4,22)(6,24)(8,14)(10,16)(12,18), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,3)(4,12)(5,11)(6,10)(7,9)(13,15)(16,24)(17,23)(18,22)(19,21)>;
G:=Group( (2,20)(3,21)(6,24)(7,13)(10,16)(11,17), (2,20)(4,22)(6,24)(8,14)(10,16)(12,18), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,3)(4,12)(5,11)(6,10)(7,9)(13,15)(16,24)(17,23)(18,22)(19,21) );
G=PermutationGroup([[(2,20),(3,21),(6,24),(7,13),(10,16),(11,17)], [(2,20),(4,22),(6,24),(8,14),(10,16),(12,18)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,15),(16,24),(17,23),(18,22),(19,21)]])
G:=TransitiveGroup(24,345);
(1 19)(2 23)(3 15)(4 13)(5 17)(6 21)(7 16)(8 14)(9 24)(10 22)(11 20)(12 18)
(1 7)(2 11)(3 9)(4 10)(5 8)(6 12)(13 22)(14 17)(15 24)(16 19)(18 21)(20 23)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 2 3)(4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 6)(2 5)(3 4)(7 12)(8 11)(9 10)(13 18)(14 17)(15 16)(19 24)(20 23)(21 22)
G:=sub<Sym(24)| (1,19)(2,23)(3,15)(4,13)(5,17)(6,21)(7,16)(8,14)(9,24)(10,22)(11,20)(12,18), (1,7)(2,11)(3,9)(4,10)(5,8)(6,12)(13,22)(14,17)(15,24)(16,19)(18,21)(20,23), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,18)(14,17)(15,16)(19,24)(20,23)(21,22)>;
G:=Group( (1,19)(2,23)(3,15)(4,13)(5,17)(6,21)(7,16)(8,14)(9,24)(10,22)(11,20)(12,18), (1,7)(2,11)(3,9)(4,10)(5,8)(6,12)(13,22)(14,17)(15,24)(16,19)(18,21)(20,23), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,18)(14,17)(15,16)(19,24)(20,23)(21,22) );
G=PermutationGroup([[(1,19),(2,23),(3,15),(4,13),(5,17),(6,21),(7,16),(8,14),(9,24),(10,22),(11,20),(12,18)], [(1,7),(2,11),(3,9),(4,10),(5,8),(6,12),(13,22),(14,17),(15,24),(16,19),(18,21),(20,23)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,2,3),(4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10),(13,18),(14,17),(15,16),(19,24),(20,23),(21,22)]])
G:=TransitiveGroup(24,367);
Matrix representation of C23⋊D12 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
8 | 7 | 0 | 0 | 0 | 0 |
12 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
4 | 7 | 0 | 0 | 0 | 0 |
9 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 12 | 0 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[8,12,0,0,0,0,7,9,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,0],[4,9,0,0,0,0,7,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,12,0] >;
C23⋊D12 in GAP, Magma, Sage, TeX
C_2^3\rtimes D_{12}
% in TeX
G:=Group("C2^3:D12");
// GroupNames label
G:=SmallGroup(192,300);
// by ID
G=gap.SmallGroup(192,300);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,219,58,570,1684,438,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^12=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e=a*b*c,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export